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We present a new simulation code for electrostatic waves in one dimension which
uses the Vlasov equation to integrate the distribution function and Amp`ere’s equation
to integrate the electric field forward in time. Previous Vlasov codes used the Vlasov
and Poisson equations. Using Amp`ere’s equation has two advantages. First, boundary
conditions do not have to be set on the electric field. Second, it forms a logical basis
for an electromagnetic code since the time integration of the electric and magnetic
fields is treated in a similar way. MacCormack’s method is used to integrate the
Vlasov equation, which was found to be easy to implement and reliable. A stability
analysis is presented for the MacCormack scheme applied to the Vlasov equation.
Conditions for stability are more stringent than the simple Courant–Friedrich’s–
Lewy (CFL) conditions for the spatial and velocity grids. We provide a simple linear
function which when combined with the CFL conditions should ensure stability.
Simulation results for Landau damping are in excellent agreement with numerical
solutions of the linear dispersion relation for a wide range of wavelengths. The code
is also able to retain phase memory as demonstrated by the recurrence effect and
reproduce the effects of particle trapping. The use of Amp`ere’s equation enables
standing and traveling waves to be produced depending on whether the current is
zero or non-zero, respectively. In simulations where the initial current is non-zero
and Maxwell’s equations are satisfied initially, additional standing waves may be set
up, which could be important when the coupling of wave fields from a transmitter to
a plasma is considered.c© 2001 Academic Press
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INTRODUCTION

Numerical simulations have become an increasingly important tool to study complex
problems in space plasma physics. The kinetic theory of collisionless space plasmas is de-
scribed by the set of Vlasov–Maxwell equations. There are two methods commonly used to
solve these equations: one is the particle-in-cell (PIC) method and the other is known as the
Vlasov simulation method [17]. In both methods there are three dependent variables, the
particle distribution functionf (r , v, t) and the electromagnetic fieldsE(r , t) andB(r , t).
There are three independent variables, spacer , velocityv, and timet . The PIC method is the
one most widely used and is in effect a mixed Lagrangian–Eulerian method. Heref is repre-
sented by many test particles or super particles. By Lagrangian integration along the particle
trajectories using the discretized form of the particle equations of motion,f is reconstructed
at a later time by summing up these super particles in each cell of an Eulerian grid. The
currentJ(r , t) and charge densityρ(r , t) are obtained by integratingf overv, and are used
to stepE andB forward by solving Maxwell’s equations on the discrete Eulerian grid.

In the Vlasov simulation method the particle distribution functionf is defined on a grid in
phase (r , v) space. Several methods have been used to solve the Vlasov–Maxwell equations
including finite difference [3], semi-Lagrangian [6], and spectral methods [11]. Hybrid
techniques have also been used [8, 19] which are mixed Lagrangian–Eulerian methods like
the PIC method. However, the particles are used only to provide information on how the
distribution function is carried across phase space. The distribution function is integrated
forward in time using Liouville’s theorem which states that for a given particle speciesf
is constant along the particle trajectory in phase space.

The fact that one super particle represents many real particles in a PIC code leads to two
disadvantages: First, particle codes have relatively high numerical noise, and second, the
results are scaled by the unphysical mass and charge of the super particles. High numerical
noise means that very often simulations have to be set up with unrealistic input values in
order to obtain results above the noise level. This may not always pertain to observations.
In addition, numerical noise causes unwanted numerical particle diffusion [21]. In contrast,
Vlasov codes have very low noise levels and are not subject to mass scaling. However,
Vlasov codes are subject to problems which result from filamentation in which fine structure
develops in the distribution function. The fine structure develops with time until it becomes
comparable to the grid spacing in which case numerical diffusion may ensue and in some
cases the simulation may fail. Filamentation has been a particularly difficult problem to
overcome, and is one reason why the use of PIC codes has become so widespread. However, a
solution to the filamentation problem was found by Klimas [14] and demonstrated by Klimas
and Farrell [15]. This has stimulated the development of new Vlasov codes. The recurrence
effect [6] is another limitation of the Vlasov codes that is related to filamentation but is
unphysical. Recurrence is a problem for simulations where the wave field is decaying, but
should not present a problem in simulations where the waves are growing since the electric
field perturbs the ballistic trajectories and may cause trapping in certain velocity ranges.
Vlasov codes have also been difficult to extend to more than one dimension due to the large
requirements for computer memory and speed. With the development of massively parallel
computers this will become less of a problem.

Several techniques have been developed to integrate the Vlasov equation. Gazdag [10]
used an accurate space derivative method which was accurate to the third order for one
dimension in real space and two dimensions in velocity space (1d2v). This was applied to
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Bernstein waves propagating across the magnetic field. Cheng and Knorr [6] introduced a
splitting scheme in which the Vlasov equation is broken down into two coupled equations
and integrated for half a time step in space and then half a time step in velocity space.
They applied this to study linear and nonlinear Landau damping of Langmuir waves in one
dimension. It has since been used by other authors in applications to double layers [4].
Other methods, using Fourier transforms, have also been demonstrated [15].

One feature common to all these previous studies is that they solve Vlasov’s equation with
Poisson’s equation. In this paper we present a new technique which solves Vlasov’s equation
with Ampère’s law. By solving these two equations we can calculate the time evolution of
the electric field directly without having to apply spatial boundary conditions to the electric
field. This should yield the same physical results for electrostatic waves [16], but the method
should be extendable to electromagnetic waves as well. We demonstrate that the method
agrees with the results of Landau damping for both standing and traveling waves and can
also reproduce the effects of nonlinear trapping. The use of Amp`ere’s equation enables both
propagating and traveling wave solutions for periodic boundary conditions.

THE VLASOV–MAXWELL EQUATIONS

We consider the set of Vlasov–Maxwell equations for 1D in space, and 1D in velocity
space, with no external magnetic field. We consider only electrostatic waves where the
induced magnetic field is so small it can be neglected. We integrate the Vlasov equation

∂ fσ
∂t
= −vx

∂ fσ
∂x
− qσ

mσ

Ex
∂ fσ
∂vx

, (1)

together with Amp`ere’s law

∂Ex,int

∂t
= −c2µ◦Jx,int , (2)

and check that Poisson’s equation is satisfied

∂Ex,int

∂x
= ρint

ε◦
, (3)

whereEx(x, t) = Ex,int + Ex,ext is the sum of the internal and external electric fields, and
ρint (x, t) andJx,int (x, t) are the charge and current densities given by

ρint (x, t) =
∑
σ

qσ

∫
fσ (x, vx, t) dvx, (4)

Jx,int (x, t) =
∑
σ

qσ

∫
vx fσ (x, vx, t) dvx, (5)

where the summation is over all ion and electron species in the plasma. Here we consider
the ions to be H+ and to form a fixed neutralizing background with constant phase space
density. We only consider electron dynamics. This is reasonable for time scales of the order
of
√

mi /me ≈ 43 electron plasma periods or under conditions where the ion dynamics is
not important. The external electric field,Eext, satisfies equations analogous to Eq. (2) and
(3) but with Ex,int , Jx,int , andρint replaced byEx,ext, Jx,ext, andρext. Note thatJx,ext and
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ρext are not determined by the distribution function since they are external. From now on
we drop the subscriptx on the one-dimensional vector quantities and the subscriptsint and
ext since we shall not consider applied external fields.

THE INTEGRATION METHOD

At time t = 0 we specify f (x, v) andE(x) and calculateρ(x) and J(x) from Eqs. (4)
and (5). We integrate (1) and (2) to getf (x, v) andE(x) at the new time step and then use
the new f in Eqs. (4) and (5) to calculateρ(x) andJ(x). We then repeat the cycle for the
required number of time steps. At each time step we check that Eq. (3) is satisfied and that∫

f dxdv is conserved.
Specifically, we use MacCormack’s integration method (e.g., [1]) for the Vlasov equation.

This has the advantage that it does not require explicit calculation of second derivatives and
yet it is accurate to second order. It is therefore easier to implement than other methods, such
as the Lax–Wendroff method, used in other space plasma simulation codes. Writingf n

i, j as
the distribution function at positionx = i1x with velocityvx = j1v at timet = n1t , we
can estimatef at then+ 1 time step to second order by the Taylor series

f n+1
i, j = f n

i, j +1t
∂ f

∂t

∣∣∣∣n
i, j

+ 1t2

2

∂2 f

∂t2

∣∣∣∣n
i, j

+ · · · ; (6)

similarly we have

∂ f

∂t

∣∣∣∣n+1

i, j

= ∂ f

∂t

∣∣∣∣n
i, j

+1t
∂2 f

∂t2

∣∣∣∣n
i, j

+ · · · . (7)

Eliminating ∂2 f
∂t2 |ni, j we obtain

f n+1
i, j = f n

i, j +
1t

2

[
∂ f

∂t

∣∣∣∣n+1

i, j

+ ∂ f

∂t

∣∣∣∣n
i, j

]
+ O(1t3). (8)

In the MacCormack method we calculate∂ f
∂t |n and ∂ f

∂t |n+1 by finite difference as follows:
The first step is to use forward difference in space (i ) and velocity (j ) to obtain(

∂ f

∂t

)n

i, j

= −v j

[
f n
i+1, j − f n

i, j

1x

]
− q

m
En+1/2

i

[
f n
i, j+1− f n

i, j

1v

]
. (9)

The second step is to predictfi, j at the next time step using a first-order Taylor series

f̄ n+1
i, j = f n

i, j +1t

(
∂ f

∂t

)n

i, j

. (10)

The third step is to estimate the time derivative off̄ i, j using backward difference,

(
∂ f

∂t

)n+1

i, j

= −v j

[
f̄ n+1

i, j − f̄ n+1
i−1, j

1x

]
− q

m
En+1/2

i

[
f̄ n+1

i, j − f̄ n+1
i, j−1

1v

]
. (11)
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Finally f is integrated forward in time by substituting (9) and (11) into (8) where(
∂ f
∂t )

n+1
i, j

is an estimate of( ∂ f
∂t )

n+1
i, j .

Since the average time derivative is taken betweent and t +1t using forward and
backward difference it can be shown thatf n+1

i, j is accurate to second order in space and time
[1]. Boundary conditions are applied to interpolate the newf onto the outermost grid cells
which cannot be calculated from Eq. (8). The interpolation region is only one grid cell wide
in contrast to two grid cells wide for second order methods.

To calculate Eqs. (9) and (11) the electric field must be integrated before the Vlasov
equation. Since the currentJ at timet is known we use a second-order central difference
method to integrate the electric field

En+1
i = 21t

(
∂E

∂t

)n

i

+ En−1
i = −21tc2µ◦Jn

i + En−1
i (12)

to obtain

En+1/2
i = 1

2

(
En

i + En+1
i

)
, (13)

whereE andJ refer to the internal electric field and current, respectively. Since the current
is obtained from an integration over velocity space it does not depend on grid cells outside
the simulation box. Thus boundary conditions do not have to be set on the electric field.
This is an advantage over using Poisson’s equation for finding the electric field.

STABILITY ANALYSIS

We now present a stability analysis for our Vlasov simulation code using the MacCormack
scheme. Substituting (6), (7), (8), and (10) into (9) we obtain an expression forf n+1 in
terms of f n and terms involvingv j , v j−1, En

i , andEn+1
i−1 . By expanding all terms involving

i − 1, j − 1, etc. in Taylor series and neglecting terms of order(1t)3 and above, the resulting
expression can be written back in an analytical form. The analytical form is exactly the same
as that obtained by expanding the Vlasov equation in a Taylor series neglecting third and
higher order terms given by

f (t +1t) = f (t)− v1t
∂ f

∂x
+ v21t2

2

∂2 f

∂x2
− q

m
E1t

∂ f

∂v
+ q2

m2
E21t2

2

∂2 f

∂v2

+ q

m

1t2

2

(
v
∂E

∂x
− ∂E

∂t

)
∂ f

∂v
+ q

m
Ev1t2 ∂

2 f

∂x∂v
+ q

m
E
1t2

2

∂ f

∂x
. (14)

Note here that the last three terms express the coupling between convection in real space
and convection in velocity space. They are important for the stability calculations below.
We also note that the difference between usingEn+1/2 as opposed toEn in (9) andEn+1

in (11) is negligible since the difference is on the order of(1t)3. This has been checked in
our simulations.

Assuming thatf varies as exp(ikx) exp(ikvv), thenE varies as exp(ikx), and we obtain
an amplification factor,g, for the MacCormack method given by

g = f n+1
i, j

f n
i, j

= 1− ib j sin(φ)+ b2
i (cosφ − 1)− iai sin(ψ)+ ai (cosψ − 1)

+ 1

2
ai bi [cosφ + cosψ − 2− cos(2φ − ψ)+ cos 2φ]
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+ i
1

2
ai bi [sinφ + sinψ + sin(2φ − ψ)− sin 2φ]

− 1

2
ai (bj − b1)[cos(φ − ψ)− cosφ + i sin(φ − ψ)+ i sinψ ], (15)

where

ai = 1t

1v

qe

me
En+1/2

i (16)

and

bj = 1t

1x
v j , (17)

andφ = k1x andψ = kv1v. For stability we require|g|2 ≤ 1. In the limit E = 0, which
is the free-streaming case, we obtain

1t ≤ 1x

v j
(18)

which is the well-known Courant–Friedrich’s–Lewy (CFL) condition for stability. Figure 1a
shows the variation of|g| with k1x for a Courant factor,CF = v j1t/1x = 0.8. It shows
that short wavelength waves are heavily damped. In the limit,v j = 0, where the advection
term is neglected, we obtain

1t ≤ me

qe

1v

En+1/2
i

, (19)

which, by analogy, represents the condition for numerical stability on the velocity grid. It
effectively says that in time1t information must not propagate across more than one velocity
cell. In the MacCormack scheme used here the stability requirement is more stringent than
that given by the CFL condition since the integration involves extra terms such as the
∂2 f/∂x∂v term. Figure 1b shows the computed values of|g| for a range ofa andb between
0 and 1 in steps of 0.04. At each value ofa and b, |g| has been computed forψ and
φ varying between 0 andπ in steps of 5◦. Contours of the marginally unstable values
of g between 1.02 and 1.10 are shown by the solid lines and lie outside the dashed line
corresponding toa = 1− b. Inside the dashed line we have|g| < 1 and the scheme is
stable.

Thus, satisfying Eqs. (18) and (19) is not sufficient for stability since it is still possible
to have a range ofa ≤ 1 andb ≤ 1 where|g| > 1; for example,a = 0.8 andb = 0.8. In
the MacCormack scheme used here stability also requires, to a good approximation,

a ≤ 1− b. (20)

In all our simulations we ensure that conditions (18), (19), and (20) are satisfied, wherev j

is replaced with the maximum grid velocityvcut andEn+1/2
i is replaced with the maximum

electric fieldEmax. The time step is also multiplied by a Courant factorCF = 0.8 to ensure
stability.
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FIG. 1. Stability of the MacCormack method for integrating the Vlasov equation. (a) The amplification factor,
|g|, versus normalized wavenumber,k1x, for the free-streaming Vlasov equation and a Courant factor,CF = 0.8.
(b) The amplification factor,|g|, versus the velocity space Courant factor,a, and the real space Courant factor,
b, for the full Vlasov equation. Cases of marginal instability 1.02≤ |g| ≤ 1.10 are shown by the solid lines.
The dashed line indicatesa = 1− b, which approximately separates the stable(|g| ≤ 1) and unstable(|g| > 1)
regions.

CURRENT INTEGRATION

It is important to calculate the current accurately in order to step the electric field forward
in time. This involves an integration over velocity space as defined in Eq. (5). We have tried
three different integration methods. The first is a simple summation over velocity space
from negative to positive velocities, the second is a three point Simpson method, and the
third is a summation in pairs. The “in pairs” method calculates the function atv f (v) and
−v f (−v), so that they should be of the same order of magnitude but opposite in sign, and
forms the sum. This is repeated for other values ofv until the whole range is covered.

We have performed a series of integration tests by calculating, for each of the three inte-
gration methods, the current of a drifting Maxwellian distribution at various drift velocities.
The distribution function is defined by

f (x, vx) = ne(x)

π1/2αe
exp
[−(vx − vd)

2/α2
e

]
δ(vy)δ(vz), (21)

where for each componentne(x) is the electron number density in m−3, vd is the drift
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FIG. 2. Comparison between different integration methods for obtaining the current. The top panel shows the
function to be integrated for different drift velocities. The middle two panels show the error in the current using
Simpson’s integration method (crosses), the summing method (squares), and the “in pairs” method (triangles) for
1000 grid points. The bottom panel shows the results of the “in pairs” method when the number of grid points is
reduced from 1000 (triangles) to 10 (diamonds).
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velocity, andαe is the thermal velocity defined asTe = 1
2meα

2
e, whereTe is the electron

temperature. In the calculation we setne = 106 m−3 andTe = 0.1 eV and varyvd. The top
panel of Fig. 2 shows the flux,v f , versus velocity,v, for 14 different drift velocities. By
assumingE = E0 sin(kx− ωpet), whereωpe= (neq2

e/(meε0))
1/2 is the plasma frequency,

and using (5) and (2), the range ofvd corresponds to electric fields in the range 10−7 ≤
E ≤ 5× 10−1 V m−1. The velocity grid has 1000 grid points and the center of the velocity
grid is set atv = 0 (i.e., calculated atv = 0) as the function is zero at this point for all drift
velocities. Note however that zero values are not shown on the log scale. The maximum
grid velocity,vcut, was set tovcut = 5αe.

The second and third panels show the percentage error in current density versus the drift
velocity and electric field, respectively, for the three integration methods. All three methods
provide accurate integration forE ≤ 5× 10−2 V m−1. For larger electric fields the function
is highly skewed and there is a large contribution to the integral outside|vcut|. Tests showed
that accuracy could be regained by increasingvcut. Throughout the whole range of drift
velocities the “in pairs” method performs consistently better than either the Simpson or
summing methods. It is particularly good when compared to the other methods for drift
velocities much less than the grid sizevd/1v ¿ 1. In this region the error in the calculated
current is a fraction of a percent while the error in the other methods increases up to 10%. It
should also be noted that while the percentage error inJ increases with decreasingvd/1v

the absolute error is approximately constant over five orders of magnitude. When the number
of points in the “in pairs” method was changed from 1000 to 10 (bottom panel in Fig. 2) it
is remarkable that this makes very little difference to the error. This suggests that the first
moment of the distribution function is relatively insensitive to the grid resolution when the
distribution function is smooth.

LANDAU DAMPING FOR STANDING WAVES

To demonstrate the use and accuracy of the code we now apply it to the Landau damping
problem. The electron distribution function is set to be Maxwellian with the same temper-
ature as used above but the initial electron density and drift velocity are allowed to vary in
space. We apply a standing wave of the form

E = [E0 sin(kx− ωt)+ E0 sin(kx+ ωt)]eγ t (22)

to the simulation box, where we assume that the wave is exponentially damped in accordance
with linear Landau damping. Hereγ is the growth (γ > 0) or damping (γ < 0) rate. We
solve Poisson’s equation to find the electron density variation in space so that att = 0 we
have

ne(x) = ni + 2kε0E0

qe
cos(kx), (23)

whereni is the constant ion number density andqe includes the sign of the charge. Solving
Ampère’s equation, there is a nonzero current att = 0 given by

J = −2γ ε0E0 sin(kx), (24)
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and hence the drift velocity is

vde(x) = −2γ ε0E0

ne(x)qe
sin(kx). (25)

The distribution function att = 0 is now defined and is consistent with the long time solution
of the Vlasov–Maxwell equations. However, it should be noted that for any perturbation
to the Vlasov system there is also a ballistic response which is not included in the long
time solution [18]. The ballistic response becomes highly oscillatory in phase space as time
increases. Since we do not know what this response would be att = 0, it is omitted from
the initial distribution function.

The distribution function having been defined the frequency and damping rate for an
initial k for Langmuir waves are found from linear theory [18] as

ω = ωpe
(
1+ 3k2λ2

D

)1/2
(26)

and

γ = −
√
π

8

ωpe

k3λ3
D

exp

[
− 1

2k2λ2
D

+ 3

2

]
, (27)

whereλD = αe/(ωpe

√
2) is the Debye length. To ensure that the physics of Landau damping

would be included in the simulation,vcut was set greater than the phase velocityω/k. We
setvcut = 5αe, where the velocity grid extends from−vcut to+vcut. We use 300 grid points
for the velocity grid so that1v ¿ αe. Since it was shown in the last section that the choice
of vcut = 5αe sets a limit on the maximum electric field for accurate integration we choose
E0 = 0.5 mV m−1 (which gives a maximum electric field of 1 mV m−1) to be well inside
that limit.

The boundary conditions for the distribution function are periodic inx and of fourth-order
interpolation inv. L is the length of the simulation box inx and is set equal to the wavelength
of the applied electric field. The number of spatial grid points isnx = 101; thus the grid
resolution satisfies1x < λD. The time step is1t = 4.96× 10−7 s which corresponds to
a = 1.40× 10−2 andb = 0.8. A list of the parameters used in the simulation is given in
Table I.

Linear Landau damping is only valid for time scales of the order of the trapping or bounce
time for particles in the potential well. The bounce time is given by [5]

Tb = 2π
√

me

qekE
. (28)

In addition, Vlasov codes with periodic boundary conditions in space are known to have
a recurrence effect whereby the particle distribution function at timet = 0 is reconstituted
(with some small modification) at some later time given by [6]

Tr = 2π

k1v
. (29)

This corresponds to the time taken for the particles in the lowest velocity grid cell to
travel one wavelength back to the same phase on the wave. At the same time, particles
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TABLE I

Constants for the Landau Damping Simulations Used in Fig. 3

Quantity Symbol Value

Ion number density ni 9.0× 105 m−3

Electron plasma frequency ωpe 5.352× 104 rad s−1

Electron temperature Te 0.1 eV
Electron thermal velocity αe 1.875× 105 m s−1

Electron drift velocity vd Varies
Debye length λD 2.478 m
Grid length inx L 5.818× 101 m
Minimum wavenumber k1 0.108 m−1

Number of grid cells inx nx 101
Grid cell length inx 1x 5.818× 10−1 m
Maximum grid velocity vcut 5αe

Number of grid cells inv nv 301
Grid cell length inv 1v 6.252× 103 m s−1

Electric field amplitude E0 5.0× 10−4 V m−1

Courant factor CF 0.8
Bounce time Tb 1.44× 10−3 s
Recurrence time Tr 9.31× 10−3 s
Timestep 1t 4.96× 10−7 s

on other velocity grid cells at integer multiples of1v will have traveled integer multiples
of a wavelength and will also be back at the same phase on the wave. Thus a Vlasov
simulation of linear Landau damping is only valid on a time scale ofTb or Tr , whichever
is the smallest. However, in simulations where the electric field grows to large amplitudes
from an initially unstable distribution function the ballistic free streaming trajectories are
perturbed and may be trapped by the large electric field. Under these conditions only part
of the distribution function in the high velocity grid cells may be reconstituted, if at all, and
therefore recurrence should not present a problem.

Figure 3 (top panel) shows an example of the time evolution of the maximum electric
field Emax for the weakly damped case wherek = 0.108 m−1. Emax is obtained by taking
the maximum electric field over the entire simulation box at each time step and therefore
oscillates through zero since standing waves are excited in this simulation. Here the waves
have no momentum since Poynting’s theorem shows there is no energy flux for electrostatic
waves. The high-frequency oscillations correspond to oscillations at twice the plasma fre-
quency as expected for electrostatic waves. (Note that a factor of 2 occurs because the waves
are standing waves.) The low-frequency envelope corresponds to the bounce frequency and
illustrates the effects of linear and nonlinear Landau damping.

Over the first high-frequency cycleEmax drops from 1 to approximately 0.78 mV m−1.
Exactly the same type of behavior is present in previous simulations (e.g., 6, 20), which
solve different equations using numerical schemes different from those presented here. We
therefore conclude that this is not a numerical problem. Since linear theory shows that there
are two time scales for the plasma to respond to an initial disturbance [18], and that linear
Landau damping is only valid on relatively long time scales after the ballistic response has
been phase mixed, we attribute the initial drop inEmax to initial transient effects, i.e., to the
contribution of poles other than the two principal Landau poles [2, 7].
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FIG. 3. Weak Landau damping for a standing wavek = 0.108 m−1. The time evolution of the maximum
electric fieldEmax is shown on a log scale in the top panel. The middle and bottom panels show the damping rate
and correlation coefficient obtained from a linear regression through the peaks in the electric field.

Since the electric field should decay exponentially until particles are trapped, we have
taken the peaks in log(Emax) and calculated the damping rate from a linear regression fit.
The first two values ofEmax have been omitted in the regression analysis to allow for any
transient effects to die away. The normalized damping rate,γ /ωpe, is shown in the middle
panel of Fig. 3, and the regression correlation coefficientr , which is a measure of how good
the fit is, is shown in the bottom panel. Bothγ /ωpe andr vary as more and more points are
included in the regression analysis. For times less than half the bounce timeγ /ωpe varies
between−3.0× 10−3 and−4.7× 10−3, and|r |> 0.997. This compares with a theoretical
value ofγ /ωpe= −6.78× 10−3 using the equations above. The particle bounce time,Tb,
corresponds to the breakdown of linear theory. Theoretically we haveTb = 1.44 ms which
is approximately at the first minimum in the envelope ofEmax.

The case for smaller wave numbersk = 0.216 m−1 where Landau damping is stronger is
shown in Fig. 4. The electric field decays by more than three orders of magnitude down to
an almost constant minimum level. The recurrence effect is quite clearly seen close to the
theoretical value oft = 4.65 ms where the electric field is reconstituted. The electric field
does not reach its original value because of effects other than free streaming. The recurrence
effect is a numerical effect introduced by a finite velocity grid. In the analytical limit,
1v→ 0, this effect would not be present. However, the recurrence effect can be regarded
as another way of demonstrating the concept of phase memory and therefore a test of the
simulation code. The theory of Landau damping shows that, while the electric field may
decay down to the noise level, the particles retain information about the initial disturbance in
a collisionless plasma. The concept has been demonstrated experimentally in the laboratory
through the phenomenon of plasma wave echoes [22]. In our simulation phase memory is
stored in the velocity distribution function. As information propagates through the spatial
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FIG. 4. Strong Landau damping for a standing wavek = 0.216 m−1. Here1t = 2.48× 10−7 s,Tb = 1.02×
10−3 s, andTr = 4.65× 10−3 s.

grid at different velocities, periodic boundary conditions in space ensure that at some later
time, Tr , information on the velocity grid will end up back in phase after information in
the lowest grid cell has traveled an integral number of wavelengths, thus reconstituting the
initial disturbance. The recurrence effect demonstrates that our simulation code retains the
property of phase memory. In some simulation codes the distribution function is smoothed
to eliminate high-frequency oscillations on the velocity grid [e.g., 15], often referred to as
filamentation. Smoothing may not only remove the recurrence effect, but also eliminate
phase memory, which is a real physical effect.

A comparison between the linear Landau damping rates obtained from our Vlasov sim-
ulations and those from linear theory is shown in Fig. 5. The solid line shows the damping
rates obtained from numerical solutions of the linear dispersion relation using the HOTRAY
code [12] and the dashed line shows the analytical results using Eqs. (26) and (27). The di-
amonds show the Vlasov simulation results derived from the linear regression of log(Emax)

on t for t < Tb/2. No results are shown forkλD > 0.6 since the HOTRAY code cannot
converge on a solution, and since it becomes very difficult to determine the damping rate
from the Vlasov simulation due to the very rapid decay of the wave electric field. The Vlasov
simulation results agree extremely well with the HOTRAY results, rather than the analytical
result, for allkλD shown. Thus, even though the simulation code uses the damping rate from
analytical theory to initiate the run, which may be in error, the damping rate calculated from
the output is correct.

LANDAU DAMPING FOR TRAVELING WAVES

We now consider the case of a traveling wave in the simulation box of the form

E = E0 sin(kx− ωt)eγ t . (30)
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FIG. 5. Comparison between the damping rates obtained from theory (dashed line), numerical solutions of
the linear dispersion relation using HOTRAY (solid line), and the Vlasov simulation code for standing waves
(triangles).

Solving Poisson’s equation we obtain the electron density att = 0 as

ne(x) = ni + kε0E0

qe
cos(kx). (31)

and solving Amp`ere’s equation we obtain a current att = 0 given by

J = ε0E0(ω cos(kx)− γ sin(kx)), (32)

and hence the drift velocity in the Maxwellian distribution att = 0 is

vde(x) = ε0E0

ne(x)qe
(ω cos(kx)− γ sin(kx)). (33)

The results for Landau damping of a traveling wave withk = 0.243 m−1 are shown in
Fig. 6 for the same plasma parameters as before. The top panel shows the results for initial
values ofω andγ taken from analytical theory. Instead ofEmax decaying smoothly there
is now a ripple on the electric field. Even when the exact numerical solutions forω and
γ are provided as input (middle panel), or whenγ = 0 (bottom panel), there is very little
effect on the ripple. In fact we find that the decay rate is very robust in a wide range of
ω andγ but that the initial value ofω effectively controls the amplitude of the ripple. We
interpret the ripple as being due to a standing wave being excited on top of the traveling
wave. Since1Emax/Emax remains approximately constant in time this suggests that both
waves decay at the same rate and therefore have the same wavelength. We believe that
the ripple originates from the initial transient effects, i.e., due to the contribution of poles
other than the two principal Landau poles which are not included in the initial conditions
(Eqs. (30)–(33)).

Although the presence of an additional standing wave does not affect our linear Landau
damping results, its presence in other applications may be important. For example, in the
transmitter problem one needs to know how electric fields transmitted from a spacecraft
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FIG. 6. Strong Landau damping for a traveling wavek = 0.243 m−1. The results are shown for theoretical
input values ofω andγ (top), numerical solutions using HOTRAY (middle), and numerical solutions forω but
γ = 0 (bottom). Here1t = 2.21× 10−7 s,Tb = 9.61× 10−4 s, andTr = 4.14× 10−3 s.

couple to the plasma. If both propagating and standing waves are excited, as our simulations
suggest, then this may lead to additional nonlinear scattering from the standing waves and
a more complicated coupling mechanism.

TRAVELING VERSUS STANDING WAVES

By solving the Vlasov–Amp`ere equations both standing and traveling waves can be
obtained depending on the initial current. If the initial current is zero, we obtain standing
waves; if it is nonzero we obtain traveling waves. (Note that in Figs. 3 and 4 the initial current
is very small which is why the result is a standing wave.) However, in a version of our code
where we solve the Vlasov–Poisson equations for periodic boundary conditions standing
wave solutions were obtained even when the initial current was nonzero. The difference is
due to the method of calculating the electric field. When using Poisson’s equation the field
at one position must be specified in order for the field across the grid to be calculated. For
a standing wave one can chooseE = 0 at the boundary. However, for a traveling wave it
is not clear what value to choose at the boundary, or at which location the field should be
zero on subsequent time steps. Since some choice must be made, the easiest solution is to
set the field to be a constant value at the boundary which results in a standing wave. In
contrast, in solving Amp`ere’s equation the electric field is obtained from the current and
a previous value of the electric field at the same location. The field does not need to be
specified at the boundary and thus traveling wave solutions are possible with the Vlasov–
Ampère equations. However, we note that it may also be possible to obtain traveling wave
solutions in other Vlasov–Poisson codes by choosing an initial distribution function that
preferentially damps traveling waves propagating in one direction [13].
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ELECTRON TRAPPING

We have also tested the code for the case where the initial energy density of the wave
(1.1× 10−14 J m−3) is comparable to the energy density of the thermal electrons (1.4×
10−14 J m−3) to see if the numerical scheme can cope with the effects of particle trapping.
Figure 7 (top panel) shows the evolution of the electric field for a much larger initialEfield of
50 mV m−1 and wavenumberk = 0.162 m−1. The number of grid cells is the same as before,
but now the timestep determined from the stability criteria is1t = 3.31× 10−7 s and the
bounce time (Tb = 1.66× 10−4 s) is less than the recurrence time (Tr = 6.20× 10−3 s).
The initial decay of the electric field and subsequent increase at aboutt ≈ Tb indicates that
particle trapping in the potential well of the wave is taking place. The linear regression fit
through the maxima of the electric field is shown in the middle panel. Note that the first
point corresponds to a fit through the first three maxima wheret < Tb and yields a damping
rateγ /ωpe< −0.35. This is much higher than the linear damping rate at this value ofk
(see Fig. 5) indicating nonlinear Landau damping.

To illustrate trapping effects more clearly, plots of the distribution function are shown in
Fig. 8. Note that for clarity the surface plots in the left-hand column show the log of the
distribution function for one half of the velocity grid while the contour plots in the right-
hand column show both positive and negative velocities. The distribution function in the
top panel is shown fort = 4.47× 10−4 s, such thatTb < t < Tr , with time increasing down
the page. Electron trapping can be identified in the distribution function by the elliptical
depression in the surface plot at a velocity centred at approximately±4.0× 105 m s−1. This
value corresponds very well to the phase velocity of the wave calculated from (26). The

FIG. 7. Nonlinear Landau damping for a standing wave withk = 0.162 m−1 andE = 50 mV m−1. The time
evolution of the maximum electric fieldEmax is shown on a log scale in the top panel. The middle and bottom
panels show the damping rate and correlation coefficient obtained from a linear regression through the peaks in
the electric field. The first point in the middle panel corresponds to a fit through the first three maxima.
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FIG. 8. The electron distribution function for three selected times illustrating electron trapping effects. The
surface plots (left-hand column) show the log of the distribution function for one half of the velocity grid only.
The contour plots (right-hand column) illustrate left and right going waves constituting a standing wave. Time
evolves down the page fromt = 4.47, 4.63, and 4.80× 10−4 s.

contour plots show the presence of two regions of trapping, corresponding to waves traveling
in opposite directions, as expected for a standing wave. The structure in the distribution
function outside the region of trapping is caused by filamentation. Note that as the time
sequence evolves from 4.47 to 4.80× 10−4 s the elliptical structures maintain their form
and move across the simulation grid as required. Thus, at least for this set of parameters, the
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code can reproduce the results of particle trapping. However, we note that the application
of smoothing techniques (e.g., 14) may be required for some scientific problems but this is
left for a future development.

CONCLUSIONS

We have developed a new numerical simulation code for electrostatic waves in one
dimension. To our knowledge, the code is unique in that it solves the Vlasov–Amp`ere
equations and not the Vlasov–Poisson equations as used in previous simulation codes. The
advantage of using Amp`ere’s equation is that no spatial boundary conditions are required
for integration of the electric field and the code should be extendable to electromagnetic
waves as well. The Vlasov equation is integrated forward using MacCormack’s method,
which does not depend on a splitting scheme used in previous Vlasov simulation codes
and is second-order accurate but does not require second-order derivatives to be calculated
explicitly. We found MacCormack’s method easy to implement and reliable. We have also
demonstrated a simple and accurate method of integrating the distribution function to obtain
the current. Our stability analysis applied to the Vlasov–Amp`ere equations yielded two
necessary conditions on the time step. One is the usual CFL condition for the linear spatial
advection equation; the other is an equivalent CFL condition for advection on the velocity
grid. However, satisfying both these conditions is not sufficient for stability. Instead, we
have shown that there is a simple linear relation between the two conditions which does
guarantee stability.

In our application to Landau damping, the results are in excellent agreement with numer-
ical solutions of the linear dispersion relation over a wide range ofkλD where the growth
rates are small. The code retains phase memory after the electric field has decayed, as
demonstrated by the recurrence effect. The code can also reproduce the effects of nonlinear
trapping. Solving the Vlasov–Amp`ere equations allows both standing and traveling wave
solutions depending on the initial current, whereas in solving the Vlasov–Poisson equations
one must know how to set the boundary conditions onE in Poisson’s equation in order
to obtain traveling waves for periodic boundary conditions. Finally we point out that even
though Maxwell’s equations may be satisfied for traveling waves initially, additional stand-
ing waves may be set up in the simulation. This may be important in simulations designed
to study how wave fields from a transmitter embedded in a plasma couple to the plasma.

ACKNOWLEDGMENTS

We thank Caroline van Heusden and Kelvin Wu for their help during the initial part of this work and the Natural
Environment Research Council for providing the necessary computing facilities.

REFERENCES

1. J. D. Anderson, Jr., Explicit finite difference methods: Some selected applications to inviscid and viscous
flows, Computational Fluid Dynamics: An Introduction, edited by John F. Wendt (Springer-Verlag, Berlin,
1992), Chap. 7, p. 123.

2. P. Bertrand and M. R. Feix,Plasma Phys.20, 1075 (1978).

3. J. A. Byers and J. Killeen, Finite difference methods for collisionless plasma models, inMethods in Compu-
tational Physics, Plasma Physics (Academic Press, New York, 1970), Vol. 9, p. 259.



200 HORNE AND FREEMAN

4. G. Chanteur, Vlasov simulations of ion acoustic double layers,Computer Simulation of Space Plasmas, edited
by H. Matsumoto and T. Sato (Terra Scientific Publishing Company, Tokyo, 1984), p. 279.

5. F. F. Chen,Introduction to Plasma Physics and Controlled Fusion(Plenum, New York, 1990), Vol. 1, p. 329.

6. C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space,J. Comput. Phys.
22, 330 (1976).

7. J. Denavit,Phys. Fluids2, 680 (1968).

8. J. Denavit,J. Comput. Phys.9, 75 (1972).

9. J. Denavit,Phys. Fluids28(9), 2773 (1985).

10. J. Gazdag, Numerical solution of the Vlasov equation with the accurate space derivative method,J. Comput.
Phys.19, 77 (1975).

11. F. C. Grant and M. R. Feix, Fourier–Hermite solutions of the Vlasov equation in the linearized limit,Phys.
Fluids10(4), 696 (1967).

12. R. B. Horne, Path-integrated growth of electrostatic waves: The generation of Terrestrial Myriametric Radia-
tion, J. Geophys. Res.94, 8895 (1989).

13. T. W. Johnston, P. Bertrand, A. Ghizzo, M. Shoucri, E. Fijalkow, and M. R. Feix, Stimulated Raman scattering:
Action evolution and particle trapping via Euler–Vlasov fluid simulation,Phys. Fluids B4(8), 2523 (1992).

14. A. J. Klimas, A method for overcoming the velocity space filamentation problem in collisionless plasma
model solutions,J. Comput. Phys.68, 202 (1987).

15. A. J. Klimas and W. M. Farrell, A splitting algorithm for Vlasov simulation with filamentation filtration,
J. Comput. Phys.110, 150 (1994).

16. A. J. Klimas and J. Cooper, Vlasov–Maxwell and Vlasov–Poisson equations as models of a one-dimensional
electron plasma,Phys. Fluids26, 478 (1983).

17. A. J. Klimas Vlasov simulation with filamentation removed,STEP SIMPO Newsletter5, 7 (1995).

18. N. A. Krall and A. W. Trivelpiece,Principles of Plasma Physics(McGraw-Hill, Tokyo, 1973), Chaps. 9 and
10, p. 442.

19. D. Nunn, A novel technique for the numerical simulation of hot collision-free plasma: Vlasov hybrid simu-
lation,J. Comput. Phys.108, 180 (1993).

20. J. W. Schumer and J. P. Holloway, Vlasov simulations using velocity-scaled Hermite representations,
J. Comput. Phys.144, 626 (1998).

21. H. Ueda, Y. Omura, H. Matsumoto, and T. Okuzawa, A study of the numerical heating in electrostatic particle
simulations,Comput. Phys. Commun.79, 249 (1994).

22. A. Y. Wong and D. R. Baker,Phys. Rev.188, 326 (1969).


	INTRODUCTION
	THE VLASOV–MAXWELL EQUATIONS
	THE INTEGRATION METHOD
	STABILITY ANALYSIS
	FIG. 1.

	CURRENT INTEGRATION
	FIG. 2.

	LANDAU DAMPING FOR STANDING WAVES
	TABLE I
	FIG. 3.
	FIG. 4.

	LANDAU DAMPING FOR TRAVELING WAVES
	FIG. 5.
	FIG. 6.

	TRAVELING VERSUS STANDING WAVES
	ELECTRON TRAPPING
	FIG. 7.
	FIG. 8.

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

